The generator matrix

 1  0  0  0  1  1  1  1  1  1  1  1 2X  1 3X  1  1  1  1  1  1  1  1  X  1  1 2X  1  1  1  1  0  1  1  1  1  1
 0  1  0  0 3X 4X 3X+1 4X+1  1 3X+2  4 3X+3  1 4X+4  1 3X  2 2X+3 X+3 X+4 2X X+2 2X+4  1 4X+2 2X+4  1 3X+2 4X+2 2X+4 4X  1 2X+2 X+4 4X  1  2
 0  0  1  0 3X+1 3X+2 3X+3  1 4X+2 X+1  2 2X+3 3X+2 2X+3 4X+1 4X+4 4X 3X 4X+1 X+4 X+2 X+3 2X+2 2X+4 4X+1 2X+4 3X  4 3X 2X 4X+3 4X+3 2X+4 4X 3X+1 X+2 3X
 0  0  0  1 3X+3 3X+2 4X+3 3X+1  X 4X+2 X+1 2X X+4 2X+4 3X+3  4 4X+4  2 4X+4 4X+1 X+4 2X+1 2X+2  4 2X 3X+3 3X+3  3 4X+2  4 X+1 3X 2X+2 3X+2 2X+1  1  0

generates a code of length 37 over Z5[X]/(X^2) who�s minimum homogenous weight is 131.

Homogenous weight enumerator: w(x)=1x^0+780x^131+1820x^132+1940x^133+500x^134+1564x^135+5360x^136+7360x^137+7220x^138+2460x^139+4544x^140+14960x^141+19200x^142+17840x^143+6120x^144+11768x^145+34960x^146+35640x^147+30760x^148+11380x^149+17200x^150+43860x^151+39580x^152+26380x^153+7040x^154+7904x^155+15080x^156+11400x^157+5860x^158+60x^160+40x^165+36x^170+8x^175

The gray image is a linear code over GF(5) with n=185, k=8 and d=131.
This code was found by Heurico 1.16 in 116 seconds.